A UNIFIED APPROACH TO MOTION
CONTROL OF MOBILE ROBOTS

11 omayoun Scraji
set Propulsion 1 .aboratory
California 1 nstitute of Technology
1 asadena, CA 91109

Abstract

This paper presents a simple on-li ne app roach for motion cont rol of mobile robots
comprised of amanipulator armmounted 011 amobile base. The proposed approach is
equally applicable to non-holonomic mobile robots such as rover-]Jlic)ulltd manipulators
and to holonomic iobile robots such as tracked robots or compou nd manipulators. Yor
wlheeled mobile robots, the non-holonomic base constraints are incorporated directly
into the task formulation as kinematic constraints. The configuration control approach
is utilized to exploit the redundancy introduced by the base nobility in order to perform
a set of user-specified additional tasks during the end-eflector motion, while satisfy ing
the non-holonomic base constraints (if applicable). This framework allows tile user to
assign weighting factors to individual base and armn configuration paramneters, as well as
to each task specification. The computational efliciency of the proposed control schieme
makes it particularly suitable for real-time implement ation.  Pwo simulation studies
are discussed to demonstrate the application of the motion co ntrol schemne to a rover-
mou nted arm (non-holonomic system) and to a tracked robot (holonomic system). An
experimental study is also presented onmotion control of a Robotics Resea rcharm
mounted on a tracked mobile platform at J)'],.




1 Introduction

Robot manipulators mounted on mobile platforms will be utilized increasingly in both ter-
restrial and space applications. For instance, NASA is planning touse a tracked compound
manipulator arm for the Space Station Freedom, and to utilize manipulator arms mounted
on Illiclc-rovers for Mars exploration. In mobile robots, the base mobility incrcases the size
of the robot workspace substantially, and enables proper positioning of the manipulator for
cificient task execution. Typical examples of mobile robots are tracked robots, gantry robots,
cornpound robots, and wheeled robots.

Inrecent years, pathplanning andmotion control of mobile robots have been active areas
of rescarchsee, e.g., 1-13]. When the base mobility is provided by a track, a gautry, or
another robot, the kinematics of the base platforin has holonomic constrainis similar to the
kinematics of the manipulator itself; thus the base can effectively be treated as additional
revolute or prismatic joints of the manipulator. On the other hand, wheeled mobile platforins
are subject to non-integrable kinematic constraints, known as non-holonomic constrainis.
Such constraints arc generally caused by one or several rolling contacts between rigid bodies,
and reflect thie fact that the wh ecled platforin must move in the direction of its main axis
of symnmetry. A rover is a typical non-holonomic mechanical system. It can attain any
position in the planc of motion with any orientation; hence the configuration space is three-
dimensional. However, the velocity of motioninust always satisfy a non-holonomic constraint;
thus the space of achievable velocities is two dimensional.

Inrecent years, there has been a growing interest inthe analysis and control of both holo-
nomic and non-holonomic mobile robots. Carriker, Khosla, and Krogh []-2] formulate the
coordination of mobility and manipulation as a nonlincar optimization p roblem. A general
cost function for point-to-point motionin Cartesian space is defined and is minimized using
a simulated anncaling method.  Pinand Culioli [3-4] define a weighted multi-criteria cost
function which is then optimized using Newton’s algorithm. Hootsmans and Dubowsky [5]
(lcvclo}) anextended Jacobian transposc controlmethod to compensate for dynamicinterac-
tions N(tw'cell themanipulator and the base. Seraji[6] describes a simple on-line method for
motion control of holonomic mobile robots. For non-holonomic mobile robots, path planning
and motion control have attracted considerable researchinrecent years [7-1 3]. In a classic
paper [7], Barraquand and Latoinbe derive the non-holonomic rover constraint and discuss
optimal mancuvering of mobile robots. Yamamoto and Yun[8-9] address coordination of lo-
comotion and mnanipulation and solve the p roblem of following amoving surface. Wang and
Kumar [10-11] associate compliance functionsto the mobile manipulator joints and imple-
nient rate decompositionusing screw theory. LivandLewis [12-13] develop a decentralized
robust controller for trajectory tracking of the mobile manipulator end-cffector.

In this paper, the configuration control methodology developed earlier [14- 1 5] for re-
dundant robot control is utilized for motion control of both holonomic and non-holonomic
mobile robots. The non-holonomic kinemnatic constraints for whecled robots fit naturally in
the configuration control formulation. The non-holonomic kinematic constraint, the desired
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end-effector motion, and the user-specified redundancy resolution goals are com bined to form
asct of augmented tasks. These tasks are then accomplished using the configuration control
approach to determine the motion of each mobility and manipulation degree-of-freedom.

QNI paperisstructuredas follows. I Section 2, motion control of non-holonomic mobile
robots is formulated and solved using the configuration control approach, and a simulation
study of arover-1n o unted arm is presented for illustration.  For holonomic mobile robots,
the motion control schieme is discussed in Section 3, and is illustrated by application to a
tracked robot. Section 4 presents an experimental study of the proposed motion control
scheme applied to a Robotics Rescarch arm mounted on a track at JPL. Section 5 discusses
the results of the paper and draws some conclusions.

2 Motion Control of Mobile Robots with Non-1lolonomic
Base Constraint)s

In this section, we consider a mobile robot comprised of a manipulator arm mounted 011 a
mobile Last with a non-holonomic constraint. The most cornmon example of such system is
a rover-mounted manipulator that will be studied in detail in this section.

We first develop asimple kinematic model that represents the rover-plus-inani pulator sys-
tem, and then describe a motion control scheme for this system. We propose a fully integrated
kinematic representation and motion control scheme for the rover and the manipulator, rather
thantreating the rover andthe manipulator as two separate entities. Iromthis view'})aill(,
the integrated systemn is composed of two closely interacting subsysteins with different kine-
matic and dynamic characteristics. The rover subsystem, being a wheeled vehicle, is subject
to non-holonomic constraints; whercas for the manipulator subsystem, the constraints are
holonomic.

The kinematics of the rover and the manipulator subsystems are studied in Sections 2.1
and 2.2, followed by the motion control scheme in Seetion 2.3.

2.1 Non-holonomic Rover Subsystem

Y

Consider a front-wheel- drive four-wheel rover. The rover is represented by atwo-dimensional
rectangular object translating and rotati ng in the plane of motion, as illustrated inligure
1. Let I'(x 4, yy) denote the midpoint. betw’ cell the two front w’lids and R(x,, y, ) represent
the midpoint between the two rear wheels of the rover, where the coordinates are expressed
with respect to the fixed world frame {W} with axes (0x,0y) shown in Figure 1, The rover
configuration is parameterized by the 3 x 1 vector p:[ay, yy, ¢]7, where ¢ denotes the
oricntation of themnain axis of the rover relative to the a-axis of the world fraine.
Assuming a pure rolling contact between the rover wheels and the ground- i.e., 110
slipping- the velocity of point 12 is always along the inain axis of the rover. Hence, we




have
Ty Acosg 3 Y Asing (1)

where A is a scalar. Fliminating A, we obtain
Fysing - y,cosg: 0 (2)

liquation (2) can be expressed in teris of the coordinates (ar,y¢) of the front_point # on the
ror('r. ‘The coordinates of the rear point R(x, , y,) and the front point /'(xy, y; ) are related
by

apy @ -l leos ¢ 5 yp =y -l Isin ¢ (3)
where 1 denotes the distance between 12 and 14, 1.¢.; the rover length. Thus, the velocities of
It ana I' arc related by

Ty dy - l(f)si11¢) TR A lq}’('-(‘sﬁf’ (1)
Irom equations (2) and (4), we obtain the following non-holonomic kinematic constraint
Epsing - Yy cose - q;)l = 0 (5)

or, in matrix form
[sing - cos¢ p= 0 (6)

where p = (@4, ¥y, d';]T. Fquation (6) represents a natural constraint that must be satisfied
by the velocity vector p, (7). It is scen that at any configuration (ay, yy, ¢), the space of
velocitics (i, gy, ¢) achievable by the rover is restricted to a two-dimensional subspace in
view of the constraint (6). This implics that the velocity vector pis corn pletely determined
by the configuration vector p and, say, &;and gs;. Notice that the achicvable configuration
space (as,yy, ¢)of the rover is three-dimensional, i.e, is completely unrestricted. Note that
cquation (6) is a special form of the non-holonomic constrainit

G(p)p: 0 (7)

where G is anm x natrix and p is the nx 1 vector of generalized coordinates of the system.
A kincinatic constraint of the form (7) is called non-holonomic if it is non-integrable; i.e., ¢
can not be elir n inated and the constraint (7) can not be rewritten in terms of ¢ alonie in the
form H{gq) = 0. Otherwise, the constraint is called holonomic.

Now, the control variables of the rover are the velocity v of the front wheels and the
steering angle v between the front wheels and t1ie main axis of the rover. Thercfore, the
velocity variables are related to the control variables by

xy = wvcos(¢- )

¥y = vsin(¢- v) (8)
. v,
e 7 S 7y




where the third equation is derived from the first two and the constraint (6). Given (@7, gy, d)),
the rover velocity v and the steering angle 5 are found from equation (8) as

1

v = [7} | yﬂ? iy osinT! [( ol } (9)

2.2 1 lolonomic Manipulator Subsystem

For simpliaity of presentation, we consider a planar two-link manipulator arm mounted on
the rover, as illustrated in Figure 1. However, the methodology presented in this paper is
general and is equally applicable to any type of ni-jointed rover-inounted manipulator,

Let 0y and 0; represent the joint angles and Iy and I, denote the link lengths of the
manipulator arm. Consider a moving vehicle frame {V} with axes ('@, I'§) attached to the
rover at the front midpoint 7. Let the position of the manipulator end-cffector 2 be the
primary task variable of interest. Then, the Cartesian coordinates of 15 with respect to the
frame {V} can be expressed as

de = lycosOy - Iycos(0 - 0y) (10)

Ue = lisindy - Lysin(0y -1 05)

The end-effector position coordinates X, =[x,y relative to the world frame {W} are
given by

e = ay -1 Lcos(0y-1 ) ly cos(0y | 0, + ¢)
Ye ¢ ys A lhisin(0r-¢)- ly sin(0y+1 0,-1 ¢) (12)

From equation (11), the Cartesian velocity of the end-ceflector in {W} is related to the rate-
of-chiange of the configuration variables as

G o dps B0 @)sin(0i 1 @)~ b4 Oyt $)sin(0 -1 051 )
ye = yf '| 11(0] -l d)) (i()S(O] '| Q‘)) ‘| 17(0] ‘{ 02 “| 4)) (',OS(O] -1 02 -| (/)) (]?)

or, in matrix form

A’I
1 0 Jyas Juas - lpsind J .
m13 m14 2 : 1 V120 (f) - )\(’ (13)
0 1 J,os Jin24 l? sin O340 0
where s Juwaa = - Lisinlyg- o Si“0120a Jos = Juoa = Ly cos by lg cos 0120, b= 0 <f’,

0190 = 0y - 03+ ¢, and 0 = [0y,05])7 is the 2 x 1 manipulator joint position vector. quation
(13) can be written in the compact form

Ju(g)g = X. (14)



where J,,(¢) is the 2 x 5 manipulator end-eflector Jacobian matrix, and ¢ = [p’,07]" -
(€7, us, ¢, 01,0)" is the 5 x 1 configuration vector of the rover-mounted manipulator systen.
quation (14) represents a holonomic kinematic constraint since it can be expressed as the
position constraint //(¢) = 0 in the form of equation (11).

We conclude that the kinematics of the rover-plus-manipulator system can be modeled as
the non-holonomic rover constraint

J(q)q = 0 (15)
where J,(¢) = [G(p):0], together with the holonomic manipulator constraint
T (9)g = X (169

Iiquations (15) and (16) can be combined to obtain the diflerential kinematic model of the
integrated rover-pl us-manipulator system as

[ J(q) "
J?h(‘l) )

2 .3 Motion Control of Integrated Rover-plus-M anipulator Sys-
tem

- (17)

A"

In this scct ion, the configuration controlmethodology developed carlier [14- 15] for red undant
manipulators is utilized for motion control of the rover- plus-m anipulator system.

Consider the integrated rover-plus- manipulator system. The integrated system is kine-
matically redundant with the degree-of- redundancy » = 1 - m, where nand 7// arce the
dimensions of gand [0, X!]" inthe general case, respectively. Equation (17) ean produce
infinite distinet rover and manipulator motions ¢(t) which yield the same end-eflector trajec-
tory X.(1)while satisfying the non-holonomic rover constraint. In this paper, we adopt the
configuration control approach in which an appropriate motion is chosen from this infinite
sct which causes the integrated systemn to accomplish an edditional user- specified task. This
additional task is performed by direct control of a sct of r user-defined kinematic functions

%= g(q) (18)

while controlling the end-cflector motion, where 7 and g are r x 1 vectors, 11 ie additional
task constraint (18) can be expressed in the velocity form

Je(q)g = 7 (19)

whiere J, = g-" is the 7 x n Jacobian matrix associated with the kinematic functions 7.
This approach to redundancy resolution is very general since each kinematic function z; can
represent a geometric variable (C. g., coordinate of a point onthe system), a physical variable
(suchas a joint gravity torque), oranabstract mathematical function(e.g., projection of the
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gradient of an optimization function). Furthermore, the user is not confined to a fixed set
of kinematic functions and can select different z; depending onthe task requirements during
the execution of the end-effector motion.

On combining the rover-plu s-manipulator constraints (1 7) and t he user-specified addi-
tional task constraint (1 9), we obtain

J.(q) U
Ju(q) | G- X (20)
| Ye (]) Z
or, in matrix form )
J(9)g:= X (21)
where J(g) is the n x n augmented Jacobian matrix, and X = [0,/\.'3','/‘/7']7' is the n x 1

augmented task velocily vector.

Suppose that the desired end-effector velocity Xq, and the desired rate-of-variation of
the kinematic functions Zg are specified by the user. Then we need to solve the augmented
differential kinematic equation .

J(g)g= Xy (22)
for ¢, where Xy : [0, /\d(,/.;]” To avoid large velocitics ¢, the user can impose the velocity
weighting factor W, = diag{W,, W,} on {p,0}, and altcinpt to minimize the weighted sum-
of-squares of velocities || p |[fy. -1 || 0 Ify,. Typically, the rover movement is slower than the
arm motion and W, is larger than W,. In addition, the user can assign prioritics to the end-
cllector and additional task requirements and non-holonomic rover constraint by selecting the
appropriate task W(ig}lling factor Wy = diag{W,, W, W}, and scck to minimize the weighted
sum of task velocity e o N, A1 e I, || B || 2, where B, = Jog Be s Xgo- X,
and ]or : /d— 7 are the non-holonomic rover, end-ceflector, and additional task velocity errors,

respectively. Hence, we seck to find the optimal solution of equation (22) that minimizes the
scalar cost function

Lz p'Wapd 0"Wi0 4 BT W, B BIW L o BIW, T, (23)
The optimal damped-least-squares solution of (22) that minimizes (23)is given by [15]
(]: [J,J‘/i/tt] “{ ‘/‘/1,]>](]Tl/‘/txld (24)

Note that in the special case where W, = 0, equation (24) gives ¢ = J~' Xy, assuming
det{J] # 0, which is the inverse Jacobian solution for the augmented equation (22). To
correct for task-space trajectory drift which occurs inevitably due to the lincarization error
inherent in differential kinematic schemes, we introduce the actual configuration vector X in
cquation (24) as [15]

[JTWT 4 W TITW [ Xa 4 K(Xg- X)) (25)




where I is ann x 1 constant diagonal miatrix with zero or positive diagonal elern ents. Notice
t hat for t he non-holonomic rover constraint, the appropriate clements of X and Xy arc sct
to zcro since the constraint is non-integrable. T'he introduction of the error correction term
KN(Xy - X) in(25) provides a “closed-loop” characteristic whereby the difference between
the desired and actual configuration vectors is used as a driving term in the inverse kinematic
transformation. Note that for task- space trajectories with constant final values, X'd(l) = ()
for t > 7 where 7 is the motion duration, and using (24) we obtain (1) : 0 for t > 7 ; i.c., the
manipulator and rover degrees-of-freedom will cease motionfor{> 7 andany task tracking-
crrorat 1= 7 will continueto exist for i > 7. However, by using (25) the manipulator and
rover degrees-of-freedom continue to move for ¢ > 7 until the desired configuration vector is
rcached, i.e., X -» Xy as 1 -1 00,[15]. The value of K determines the rate of convergence of
X to Xg.

The proposed clall)l)c(l-least- s(I1alcs configuration control scheme provides a general and
unified fraincework for motion control of the integrated rover- plus-m anipulator system. This
scheme allows independent weighting of rover inovement and manipulator motion, and enables
a wide range of redundancy resolution goals to be accomplished. Note that multiple goals
(i.c., >(n - m)) can be defined for redundancy resolution and weighted appropriately based
011 thecurrent task requirements.

Let us now re-visit the two-jointed manipulator arm mounted on the rover as illustrated
in Figure 1. This integrated system has the degree-of-redundancy » = n - m = 2, and there-
fore two configurati on-dependent kinematic functions z 3 (¢) and 29(¢) can be specified and
controlled independently of the end-eflector motion and the non-holonomic rover constraint.
For this system, we choose the rover orientation ¢ dative to the world frame and the ma-
nipulator elbow angle ¥ between the upper-arin and forearm as thie additional task variables.
Hence

a(q) = ¢ | #204) ¢ = 180 - 02 (Xi)

or, in velocity form
0010 017]. [da o
00 00 -1 )7 |4, (27)

where ¢ = [a4,9y, q;), 0, ,0.2]7',a1|(]d‘)d and 1/),1 arc the desired rate-of-valiatioll of ¢ and ¥,
respectively. On combining the rover plus-manipulator model (17) with the additional task
specifications (27), we obtain

sing - cos¢g 1 0 O @y 0
1 0 Bz Jaa Jas vy T de
0 ! Jaz Jas Jas ¢ | = | Y (28)
0 0 1 0 0 0, ¢d
0 0 0 0 -1 0, th
wi aereJes=Jag= - lisintho- 1,sin 0, Jas ¢ Jaq = &y cos 010 -1 1 cos 01205 o5 = - 13 sin 0120

Jun = lycosOy90; 010 = Oy -1 @5 oo = 0y -1 02 -1 ¢. Equation (28) represents a set of five
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cquationsinthefiveunk nown elements of ¢ that can be sol ved using the damped -least-sq uares
configurat ion cont rol approach described earlier in t his section. By direction calculation, the
determinant of the 5 x 5 augmented Jacobianmatrix appearing on the left-llalld side of (28)
is found to be
det[J) = 1) cos 0y | 1y cos(0y | 05) = 3, (29)

Thercfore, J is non-singular and (28) can be solved exactly provided that &+ (); i.e., the
end-eflector 14 dots not lic onthe Iy axis of the vehicle frame {V'}.

Now, supposce that the rover length is 1 = 20cm and the link lengths are {y = {; - 10cim.
Let the initial configuration of the rover-plus- manipulator system be given by

¢' = {ay = 30em, yy - 15em, ¢= 0°,0] = - 75°,02:150°)
This yields the initial task vector
X': {a, = 3518cm,y. = 1han,¢= 0% = 30°)

as shown in Figure 2. Supposc that the desired final task vector at time 7 = 1 second is
specified as (sce Figure 2)

X2 {a. = 6508,y = 45cm, ¢ = 30°,9 = 90°}

S T4 . . . 1 .
This corresponds to a rapid end-eflector motion of {( Ax.)? -1 (Ayc)?}2 = 42.4cm in one
sccond. Notice that the target end-eflector position is not attainable without rover motion.
Task-space motion trajectories arc specified as

; I, .
ato T

i ) o, for i <1

wall) - { at ' , fort > (30)
where (2f, @) are the initial and final values and 7 is the duration of motion. Similar tra-
jectories are specified for yqa(1), ¢a(t), and Ya(1).- These trajectories produce a straight-line
end-ceflector motion in Cartesian space from (2!, y!) to (2, y/). Notice that the target clbow
angle ¥ = 90° gives maximum end-cflector manipulability at the final configuration.

A computer simulation study is p erformed to calculate the required configuration vari-
ables g(1) = {a; (1), ys(1 ), ¢(1), 02(1), 02(1)} to accomplish the tasks of end-cffector motion,
and ¢ and ¥ cont rol, while satisfying the non-holonomic rover constraint. In the sim-
ulation, we set 7+ = 1,AL:0.01, W = dwag{l, 1,1,1, 1}, W,:diag{0,0,0,0,0}, and
K =diag{0, 0.1,0.1,0, 0}. The simulation results are shown in Figures 3a-3d. The path
traversed by the end-effector 17 is shown in Figure 3a. 1t is seen that the end-cffector moves
011 a straight line fromn (ai,y!) to (af,y/), as specified.  Figure 3b verifies that the rover
orientation ¢ and the clbow angle ¥ change from their initial values to the specified final
values inone second, as desired. The path traversed by the rover front mid-point ' and the
variations of the arm joint angles 0y and 02 arve depicted in Figures 3c and 3d. Therover
non-holonomic constraint function f = &y sin ¢ - gy sin ¢ -1 ¢l is computed and is found to
be equal to zero throughout the motion;i.c., the rover constraint is satisfied. Note that the
required rover velocity v and steering angle -y can be computed from equation (9).
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3 Motion Control of M obile Robots with 11 olonomic
13ase Constraints

T'he nobile robots considered in this section consist of a robot manipulator mou nted on a
mobile base with a holonomic constraint. Although the physical appearance of such mobile
robots are completely diflerent, their underlying kinematics principles can be formulated in
a similar manncr. lor these mobilte robots, the kinematic constraints of the base platform
can be expressed in terms of base position alone, similar to the inanipulator kinematics itself.
In this case, the base can effectively be treated as additional revolute or prisiatic joints of
the manipulator. T'wo commmon examples of this class arc a robot mounted on a track and
a compound manipulator where one arm operates from the end of another arm. Yor this
class of mobilerobots, the overall manipulator arm-plus-mobile base system can be viewed
as acomposite of two subsystems: the manipulator arm with n, degrees-of- freedom, and
the mobile base with ny, degrees-of- freedom.  The 1, degrees-of- manipulation are often of
the revolute joint type. The ny, degrees-of-mobility can be treated as prisiatic joints in the
case of a tracked robot or as revolute joints inthe case of acompoundinanipulator. 1 .etus
define afixed world frame of reference { M’} inthe robot workspace, a moving base frame
{13} attached to the manipulator Last, and a moving end-cflfector frame {15} attached to the
manipulator end-effector. The end-cflector frame {1V} is related to the base frame {13} by
the 4x4 hoinogericous transformation inatrix 74(0, ), which is the product of the arm joint -
to-joint transforms. The transformation that, relates the base frame {13} to the world frame
{W} is denoted by 78H(0,), and is obtained by multiplying the base interjoint transforins.
Thus, the end-cffector frame {1} is related to the world frame {W} by the 4x4 homogencous
transformation matrix

( 11 Fop
A A R A (8 I (31)
ko 0 0 i 1

where 12 = {r;;} is the 3x3 end-eflector rot ation matrix and p = [2, y, 2]7 is the end-ceffector
position vector, both with respect to the world frame { W}, One common three- lmmm(tm
representation of the end-effector orientation is the equivalent angle-axis Bk - [k Ky, k]?
which can be extracted readily from the rotation matrix R, [16].  Thercfore, the m(< 6)
end-cffector position and orientation coordinates to be controlled can be obtained from (31)
and represented by themx 1 Vector

Y= (0, 0,) (32)
Fquation (32) describes the forward kinematic modelthat dates the armand base joint
coordinates {O. , 0,} to the end-cffector Cartesian coordinates Y in the fixed world frame
{W}. The differential kinematic model that relates the end-cffector Cartesian velocity Y to
the arm and base joint velocities {0,,0,} is given by
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()a
Ve [Ja0) T O] ] e | = J(0)0 (33)
0y

2 o : '
where J,(0) = -50{1 and J,(0) - 50{ arc the mxn, and mxn, Jacobian matrices of the arm

and the base, respectively!, 0 - ] is the nx1 vector of mobility and manipulation joints,

a
0y |
and n:= n,- n,. This formulation puts the n, mobility and the n, manipulation deg rees-o -
freecdom on the samnce footing, and treats both 0, and 0; cqually within a ¢o1 113011 framework.,
Iiquations (32) and (33) describe the kinematics of a composite robotic system with z joint
degrees-of-freedom operating in an m-dimensional Cartesian task space.

Before discussing coordinated control of mobility and manipulation, let usinvestigate the
cflect of base mobility on the end-eflector manipulability index in the common case where
the total joint degrees-of-freedom n exceeds the end-effector task dimension m. When the
Last is stationary, the end-effector manipulability index duetothe arm joints {On} is defined
as [18]

11a(0) = {det[J, (0)J7(0))}'7? (34)

Note that in any non-singular arm configuration, J,(0) J7(0) is a symmetric positive-definite
matrix whose determinant is a positive function of {0,}. Now, when base mobility is intro-

duced, the end-effector Jacobian matrix changes from J, to J. = [Jaide), and the end-cffector
manipulability index due to both arm and base joiuts { O} :{0,, 0,} is obtained as

pe(0) = {det[J, (0)J? ()2
= {det[J,(0)JT(0) - JL(O)J}(O)]}]/Q )

In the Appendix, it is shown that

#e(0) = p1a(0) 4 0(0) (36)
where 0(0) is a positive function of O. Fquation (36) implics that the Last mobility always
cnhances the end-effector manipulability index. This is expected in view of the fact that
the base degrees-of-freedomn contribute to the end-ceflector motion and thereby increase the
Cartesian mobility of the end-effector. At singular arin configurations, J, (0) is rank-deficient
and jto(0) = 0. As shownin the Appendix, in this case p.(0)> y,(0);that is the base
mobility can in general illc.mast the end-eflector manipulability index, however in certain

'In practice, J, and Jb arc computed using the vector cross-product formula due to Whitney [10].
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cascs i (0) is dso cqual to zero. We conclude that in general, the end-eflfector manipulability
index is increased by the presence of base mobility.

Let us now consider the coordinated control of the composite arm-plus-base systemn. The
composite system is kinematically redundant with the degree- of-redundancy r = n - . Fol-
lowing the configuration control approach outlined in Section 2.3, the redundancy is utilized
so that themobile robot satisfies asct of r kinematic constraints

z(0) = z4(1) I U 37)

while executing the desired end-effector motion, where 2i(0) is a user-dcfi]]d kincinatic func-
tion of the mobile robot configuration O, and zqi(1) is the user-specified desired time variation
Of 2. liquation (37) can be writ ten in the velocity form

300+ Ja(0)0 = Zai(t) (38)

where Jg = %25 i1s the 1 x n Jacobian matrix related to the kinematic function z;. The
augmented diflerential kinematic model of the manipulator arm-plus-mobile base systemn is
thercefore obtained as

( Y1) ) I, (0 1 J(0) 0 .

:: = J(0)0 (39)
Je(0) (0
where Jo(0) = 97 i's the r x i Jacobian matrix associated with the kinematic functions 7,
and JO) is the nx N augmented Jacobian matrix. This formulation puts the redundancy
resolution goal 011 the same footing as the end-eflector task; and treats both Y and 7 equally
i a common format. Now, to find the base movement and arm motion that mecet the end -
cffector specification Y (0) = ¥y(1) and the kinematic constraints Z(0) = Z4(1), we need to
solve the augmented diflerential kinematic equation (39) for 0, given Ya(1) and Z4(t). A's in
Section 2.3, to avoid large joint velocities, the user canimpose the velocity weighting factor
W, = diag{W,, W,} on {00, 0&}, and furthermore can assign prioritics to the diflerent task
requirements by selecting the appropriate task weighting factor W, = diag{W. ,W.}. The
closed-loop optimal dal]l~)cd-least squarcs solution of (39) is given by [15]

0= [J"Wd | W VI W [Xg+ K(Xq- X)) (40)

where K is the position feedback gain matrix introduced to correct for task- space trajectory
drift due to the lincarization cyror. Yor digital control iimplementation, equation (40) is
discretized as

O(N 4 1)- O(N)
) At

Xa(N 4 1)~ X4(N)

s [(JTwg 4w Yatw
(JTWd 4 W 1T W,y Al

4 KXg(N)- KX(N)|  (41)

or
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O(N 4 1)= O(N)H [J”'W,J T W) TTWING(N A 1) - (1- KADXG(N) - KAX(N)]  (42)

whicre N denotes the sampling instant and At is the sammpling period. Equation (42) is used
to compute O(N +1) given {O(N), X4(N 1), X4(N), X(N)}. Note that in the special case

when i = = fywhere £ is the sapling fiequency, equation (42) simplifies to

ON 41) 0N [JTW I AW, T TWIXHN <11 ) - X(A")] (43)

This equation can be considered as the discrete-time version of (42) with ' = O and the
desired position Xa(N) replaced by the actual position X(N) to correct for drift. Noti ce
that, in practice, the inversion of the positive-definite matrix [J?W,J | W,] is not needed,
and O(N -1 1) can be found using the Cholesky decomposition.

In summary, the procedure for coordinated control of base mobility and arm manipulation
is as follows:
(i) Augment by column the arm Jacobian J, with the Last Jacobian Js to obtain the overall

end-eflector Jacobian J. = [JoiJy). Note that the availability of base mobility appcars as
extra columus in the Jacobian matrix, since in effect it increases the dimension of the joint
space.
(11) Augment by row the end-cffector Jacobian J. with the constraint Jacobian J. which
rclates to the user-defined additional task to be accomplished due to kinemat ic redundancy.
J,
This yiclds the augmented Jacobian J = | -+~ |. Note that the additional task lcads to extra
Je

1 ows in the Jacobian matrix, since it effectively inereases the dimension of the task space.
(iii) Specify the end-cflector and constraint task weighting factors W, = diag{W,, W.}, the
arm and base joint velocity weighting factors W, = diag{W,, Wi}, and the posi tion feedback
pain I,
(iv) Uscthe closed-loop cld]ll})c:cl-least- scl~lalcs approach to find the optimal arm and base
motions as 0= [JTW,J 4 W, WWTW [ X4+ K(Xs- X)),

For the sake of illustration, we shall now consider a spatial three-jointed arm mounted on
a onc DOI" mobile platforim, as shown inFigure 4, This resembles a PUMA robot (without
the wrist, ) mounted on a rail to obtain base mobility. Let us denote the waist joint by 0,
the shoulder joint by 0,, the elbow joint by 03, and let 04 represent the platform mobility in
a-direction, treated as a prismatic joint. Let us {irst assuine that the robot base is stationary,
i.e. 04: O. ‘Jlieu] the forward kincmatic model relating the joint angles 0 = (0,, 0, 03)7 to
the tip Cartesian coordinates Y = (a,y, 2)7inthereference world frame are readily found
to be

@ = fcosO[sin 02-1 sin(fy-104)]
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y = Lsin Oysin 0y - sin(0y -1 03)) (14)
z = {[cos Oy - cos(Oy - O3)] - I
where histhe g 1ould CT heig ht and £is thelength Of the upper-armor forearin, and issetto

unity for sim plicity. The diflerential kinematic model of the robot is Yy - Je(0)0, where the
clements of the 3x3 hand Jacobian matrix are obtained from (44) as

da . i
Jens .(;;] = - osin0[sin G 4 sin(0y 4 05)] 5 Jerss (;;z : cos 0y [cos 0z 4 cos(0z | 03))
. ")
Jera 50: z costycos(ly - 03) 3 Jeor: ;;01? = cosOy[sinfy - sin(fy - 03))
dy . Ay .
Jewo ¢ 30, : sinfy[cos 0y 4 cos(02 - 03)] ;  Jeos: 30, : sinfy cos(fq 4 03)
0z 0z . . 0z .
Jezy = '(,)0] 0 ¢ Jean: *(,)02 - sinfs - Sl]l({)y -} 03) i Jeas : 2)03 = - sin(0y, 4 03)
The singular configurations of the arm are found from
det[J] = sinOz[sin 0y - sin (0 4 03)] (45)
as o
1 sinfs:= O > 0: 0 arm fully extended
elbow singularity 03 = 1s0c arm {ully folded

"

11: sinfy - sin(0,4603)= O - > w=y= O hand is straight above
shouldersingularity the shoulder

Note thatthe case 1 singularities correspondto the hand ontheouter (05 (1°) or inner
(03 = 1 80°) workspace boundary, andin case 11 the joint 0; does not affect (@, y, 2) of the
hand and hence a joiut DOY s ineflective. The above results arcthe classical singularities of
the PUM A arim which are well-known and are repeated here for comparison with the mobile
platform Case.

Now, let us introduce base mobility to the system through the prismatic joint 64. Since
04 is along the x-axis, we obtain

@£ cosO[sin 02 - Sill (01 03)] -1 04 (46)

but y and z In Cqua‘tio]] (44) arc not aflected. The new hand Jacobian Jc will nowbca 3x4
malrix with the fourth column as

Oz 0 0z

p = 15 Jeaa = ;y 2 05 Jag= -, ¢
()04 ()04 ()04
l.et us now consider the coordinated control of the arm and the platform. The robotic
system in Fi gure 418 kin emati cally redundant since infinite combinations of joint motions
0 (01,02,03,04)7’ can produce the same tip trajectory Y = (a,y, z)?. Thisredundancy is

ijq = 0 (47)
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resolved by picking out an appropriate solution from this infinite set that meets a user-defined
additional task requirement. In this case study, we define the “clbow angle” ¢ between the
upper-arm and forcarnn as the kinematic function to be controlled independently of the tip
position for redundancy resolution. The elbow angle ¢ = 180° - 04 determines the “reach”
of the arm AP, since

AP = Lsing/2 - Lsing/2 = 2sin ¢/2 (48)

Hence by controlling ¢ we can directly influence the reach of the arm. By introducing the
clbow angle ¢ as the fourth task variable, the forward and diflerential kinematic models of
the robot are augmented by

$(0)= 180°-1 04 (49)
J(0) - g‘; [0,0,1,0] (50)

Hence, the 4x4 augmented Jacobian matrix relating the rate of change of task variables to
the joint velocities has thie following structure

x Jen Jaz Jaz 1 0} 0:1
] Jea1 Je22 Je2a 0 0, 0,
/ - . - ; 51
z 0 Jeaz Jeas 0 0 I 0y ()
¢ 0 0 1 0 04 04

Notice that the Jacobianmatrix J has a particular structure, with zcro elements indicating
that sor ne joint angles have no effect on certain task variables. Inorder to conitrol the task
variables (2, y, z, ¢) independently, the augmented Jacobi an matrix J must be non-singular.
The singularities of J arce found from

det[d]} = - Jeardesz = costysin b, - sin(0; - 03)]? (52)

Note that the simplicity of det[J] is a consequence of the particular structure of J. From
(52), it is seem that J is singular when:
L cost:= O -) 0,: 90°,2700 - »a-=0,
Last singularity

1 sin 0y 4 sin{0, 4 03) = O - » x: 04 y= 0
shoulder singularity
To investigate these singularities, we study the angimented Jacobian matrix in these singular
configurations. At the singular condition 1, the tip and the Last have the same a-coordinate,
i.c.,thetip-basc line is perpendicular to the x-axis. In this case, the first and fourth columns
of J b ccome multiples of one another; hence 0, and 0, have identical incremental effects on
the task variables {z,y, z, ¢}. At the singular condition 11, the tip is right above the base,

-
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andin this case the first colunm of 3 becomes zero; henee 01 has no instantancous effect on
any of thetask variables {@,y,z, ¢} in this configuration.

In comparison with the previous case for the stationary-base robot, it is scen that the base
mobility has alleviated the elbow singularity (sin 5= (), i.e., the armis no lo nger singular
when it is fully extended or fully folded. f low’ever ancwsingularity has beenintroduced
(cos 0y = 0) when the tip and the base line up; which is not a classical PUM A singularity and
is ducto the additional task varia ble ¢. Note that if the platforin position 0, is chosen as the
additional task variableinstead of the clbow angle ¢,i.c., the plat form  osition is conmmanded

3

J, :0

and controlled directly, then the augmented Jacobian recomes J = 0
0O 0 0 11

and det J = det Jg; hence the PUMA classical singularities are encountered in this case.

Supposc that we specify desired motion trajectories for the hand coordinates and the elbow
angle as Xq(1) = [@q(1), ya(t), z4(1), $a(O1". THen the required joint motions are obtained by
solving the equation

74(1) - sin 0 [sin 0y - sin(0 -| 03)] cos 0 [cos 02 4 cos(fs -i 03)] cos Oycos(fs -1 03) 1 / 0:1
ga(t) cos Oi[sin @y 4sin(0,-405)]  sin6,[cosOy + cos(0z -} 03)] sin d1cos(0,4 03) O 0,
iq(t) 0 - sin 0y - sin(0y - 03) - sin(02 4 03) 0 I

( d)d(i)) ( 0 0 | 0 0'4
(63)

T'he closed-loop damped-least-squares solution of (53) that minimizes

Ls | Xa = J0y, A 110113, (54)

is given by
0 - (JTW,J - W, I W, (X E(Xq- X)) (5h)
Suppose that initially, the arm joint ¢ 1gles are 0y = 0°,0, = 90°,05 = - 30° and the basc is

at 04 = 1.0 meter relative to a fixed world frame; yielding the initial hand position a; = 2.866
meter,y; = O meter, 2 = 1.5 meter and the initial elbow angle @i= 150°. Let the target task-
space arm configuration be specified as @y = 3.866 mcter, yy = 0.5 meter, zy = 2.25 meter,
and ¢y= 90° in the world frame. This corresponds to the hand inotion of ||Yy - Yi||= 1.35
meterin Cartesian space and the clbow angle change of ¢y - ¢i= - 60°. Notice that the
target hand position is not attainable without Last inotion,i.c., (xy,yy,2s) is outside the
arm worksprace when the base is stationary at 1.0 meter. Motion trajectories are specified in
task- space as

16




SRR A, for 4 <7 (1y: { ¥ AHTE for 1< 7
:1(1( R . yYd .
xy , for 1t>71 Yy , for t>7

zo for 1< & b1 g for <7 .
zq(l) = 7 ’ - (1) = ! T > A 5(
A { f , for 1> oult) { ¢y , for t>71 (56)

where 7 is theduration of motion.  These trajectories produce a straight-line motion in

Cartesian space from (a4, yi, 2i) to (x4, y;, 25), since 5_"!"_,’;',' : _y»yy;_i -22]'722"1. .To find out the
required joint motions, we substitute the desired task velocitices
T o< vy <,
aq(l) = ’ : iy ya(l) = 7 X 57
() { 0 1> P vl { 0 t>1 (57)

. By <, ‘ $rod < g
Zd(i):{ E) t—>7' ; d)d(t):{ E) i_>7

into equation (53) and integrate the acquired solution given by equation (55). The Jacobian
matrixin (53) is then updated and the procedure is repeated. Inthis case study, the trajectory
duration 7 is 1 second, the time increment Al is 0.01 second, the position feedback gaink is
sct to 10, and the units of (@, y, z, ¢) are meters and radian.

T'wo computer simulation studies are perforimed to investigate the effects of the base
velocity weighting a and the additional task weighting 8 on the system performance, where
Wy = diag{0,0,0,a} and W, = diag{1, 1,1, B}. Notice thatinthe cost function (54), the
arm joiut velocitics (01, 02, 0s) are nol penalized and the task velocity error weightings for
(x,y, 2) arcset cqual to one.

Case 1 - Eflect of a:1n this case, we set 4= 1 and find the required joint motions for
three different values of the base velocity weighting o= O, 1, 10. Figures ba-5h depict the
computer simulation results and ‘Jable 1 summarizes the steady-static values. It is seenthat
when « » 0, the configuration variables (@, y, z., ¢)track the desired trajectories and reach
the target values int= 1 sccond.Yor o= 1 anda = 10, the task-s pace tracking performance
is degraded, but the joints continue to move after <= lsccond until the target valucs are
rcached ulli mately. However, due to the penally iinposed on the base motion, the base moves
slower andby a less amnountinthis case. Notice that a higher value for « results inless base
motion but a poorer task-space tracking performance.

Case 2- Fflect of @« and B:1n this case, we choose 8 a function of a so that as we impose
penalty onthe Last motion, we also relax the additional task constraint. This suggests that
£ must be an inverse function of «, and here we choose a simple function as #:=1/(a - 1).
Equation (55) is now solved for threc different values of the base velocity weighting = O, 1,10
with the corresponding elbow angle weighting =1, 0.5, 0,091. The simulation results arc
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shown in Figures 6a-6h, and the steady-state values are given in Table 2. 1t is scen that as
a increases and 3 decreases, the base motion is reduced but the task performance is also
degraded. Nowever, since the ¢ constraint is relaxed antomatically in this case, we observe
a better tracking performance in the hand coordinates (@, y, z), as compared to the previous
casc. Recall that since (24,97, 27) is outside the robot workspace if the base is stationary,
base movement is necessary even if only hand motion is specified.

4 Ixperimental Study

In this section, we describe the experimental validation of the proposed approach to motion
control of mobile robots as applied to a tracked robot. The facility used for this experimental
study is the J]'], Remote Surface Inspection Laboratory. The laboratory sctup is shiown in
Iigure 7 and is comprised of a Robotics Rescarch Corporation 1{1'207 seven DOY arm/control
unit, a VME-based chassis with two MC68040 processor boards and additional interface cards,
two joysticks, a motorized platform/control unit, and a Silicon Graphics IR1 S workstation,
To enable insprection of extended surfaces, the ¥ DOFY RRC arm which carries the inspection
sensors is mounted o011 the 1 DOF mobile platform that can move back and forth along a
track installed on the floor.

We first describe the kinemnatic analysis of the system and then present the experimental
results.

4.1 Kincematic Analysis

In order to simplify the analysis, we disregard the three minor joints at the wrist and consider
the four major joints of the RRC arm; namcly the shoulder roll and pitch joints 0y, 0,, and
the elbow roll and pitch joints 03,04 as shown in Figure 8. The base platform motion on
the track is along the x-axis of the world frame and is treated as the prisinatic joint 0. Let
the task variables of interest be the wrist Cartesian coordinates {z, y, 2} and the arm angle
1, defined as the angle between the plane passing through the arm and the vertical plane
passing through the shoulder- wrist line. ‘The forward kinematic model relating {z,y, 2,9} to
{0], 0,,03,04, 05} has beenfound to be[19)]

T = €18z 18204 - sq(c1c2c3 - $183) - O
y = 818y 818204+ sq(s1cac3+ c183)
= 2 Geq - Sacasq -l d (58)
s
L (1t(1712{szs334,-: [cosy - s2ca(1 4 )]} = atan2{wu,v}

where u and v are the arguments of the atan2 function, r = (24 2¢4)!/? denotes the reach
of the arm (i.e., the shoulder-wrist distance SW), & is the shoulder height, the upper-arm
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and forcarn length s are taken to e wnity (S# = BW = 1 ), ands,=sin0;, ¢ = (' 0S 0;
In deriving equation (58), the siall offsets at the shoulder and elbow joints of the arm are
ignored relative to the linklengths so thatthe analysis is mathematically trac table. Note
that when there is no elbow roll motion (5= ()), we obtainy = 0, i.c., the arin stays inthe
vertical place, (58) reduces to (44), and the PUMA robot in Section 3 is retrieved.

Since the robot system shown in Figure 8 has five independent joint degrees-of- freedom,
we can control another task variable inaddition to {a, y, z,%}. In this study, the additional
task variable is chosen as the “elbow angle” ¢ formed between the upper-arm S# and the
forcarm I W, as in Scction 3. The elbow angle ¢ is related to the joint angles by

¢ = 180°-10, (59)

and dctermines the reach of the arn. Irom triangle W EF, we obtain

r= SW = 20sin ¢/2 = 2sin ¢/2 (60)

Hence the arm reach r is a simple sinusoidal function of the elbow angle ¢, aud ¢ can be used
to control r directly. This cquation can also be obtained by applying the cosine 1aw to the
SIW triangle to obtain » = [2 - 2c0s04]"/? which can be reduced to equation (60) using the
half-angle cosine formula. Notice that the arm angle b and the elbow angle ¢ represent tw o
independent configuration parameters for the arm. The radius of the circle traversed by the
elbow whenthearm is executing aself-motion (i. e, wrist is fixed) is a function of the elbow
angle as IV} = € cos ¢/2. The variation of the armrcachr as a function of the elbow angle
¢ is shown in Figure 9. It is scen that when ¢ changes intherange {O, 1800}, » varies {romn
O to2;withr: O at ¢ = O (arm fully folded) andr=2at ¢ - 180° (arm fully extended).

Equations (58)-(59) represent the angmented forward kinematic model of the mobile
robot system . The auginented diflerential kinematic model relating the joint velocities
{01,0,,05,04,05} to the resulting task variable velocities {2, 1, 2, z/», q‘;} is obtained by dif-
ferentiating (58)-(59) as

. I J.  Jis Jus ] . .
* Ja 3, Joz Jyy O 0, 0y
. Y J . Q'Z Q2
Y- i |- (@] 32 Jaz Jayg : O 0, | = J0)| 0, (61)
P 0 J, Jis J,: O 04 04
(f) .................. 05 05
0 0 0 1 : 0

Because of the particular structure of the 5x5 augmented Jacobian matrix J, the expression
for det[J]siiplifies considerably to

det[J] = - J,, [Js3day - Js243)] (62)
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The elements of J that appear in (62) can be obtained from (h8) as

Ay

Jor = 0 T arsoel ¢r8ecs | erepcasy - 8183847 a0 - Oy
()0]
Oz
(]32 = ~(()02 - 820 8904 - (€384 = - ])(2
; dz
J = - = 89838
33 904 828384
; ap R Ju I ay  dv 1 v du
12 A0y  Gu H0y  Odv 00y w4 v?| 00, a0,
ap Yy Ou Y dv ] dv du
N S U Vo s U,
dls  du 803 v 005 urd v? | 004 004

where PQ = (22 4 %)Y? is the distance between the wrist projection on the @ -y plance P2
and the robot base @), and the partial derivatives in the above expressions are given by

,au » o818 . _ (r)v_ S’l . . * . (] ) ]
80, ~ Y a0, Ty [ s284 -1 c2es( -} eq)
(f)u (()U s
a0, * s 3 g c ) [ sslie)]

Substituting these expressions into (62) and simplifying the result yields the surprisingly
simple expression

det]J]) = rsa(ls - ) (63)
This analysis shows that the arm-plus-platforin systein has the following singular configura-
tions:
1: 05- 2= 0 - 2= 0 wrist and platform have the same z-coordinate
11; 2= O -» 0= 0°,1800 upper-arm is vertical
111: r=o 04 180° arm is fully folded

In singular configuration 1 (i.e., @ = 05), the first and {ifth columns of J are multiples and
hence Oyand 0s have identical eflects onthe task variables. In singular configurations 11 and
Jzy sz
CJaz Jas
and hence the joint angles {03,03} do not aflect the task variables {z,v} independently.

11 (i.e., 82 = O and¢y = - 1), the 2x2 submatrix of J becomes rank-deficient,

4.2 Expcrimental Results

Supposc that the motion trajectories Xg(t) = [2a(t), ya(1), za(1), va(t), pa(t))? ave specified for
the task variables. T'henthe required joint motions can be obtained by finding the closed-loop
clarll)(~cl- least- sclllat's solution of
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.T.Td LJ]] J]Z JIL{ J]4 1 ()]

' Ya o gy Jox Jpa O 0:2

4\’(1 H Zd : 0 J3? J33 J:M O 03 = JO (()4)
1/-%1 0 Jaa Jaz Jaa O 0.4
¢a 0o 0 0 10 0,

that minimizes the cost function 1, = |

Xd - JO'ny, 1 HOHfa as

0= [JTWid 4 W) P I W Xg 1 K(Xg- X)) (65)

Typically, the pitch angle 04 can vary inthe range - 180° <04 < o° and hence the range
of varialion of theclbowangle¢ is 0° to 180°. Themost desirable! elbow angle is ¢ = 90°,
which corresponds to the pitch angle 04 in mid-range and enisures that the arm is not in an
over-stret,chcd (¢~ 1 80°)or anunder-stretched (¢ 7 0°) configuration. The elbow condition
¢ =90° can also be derived from another point of view. For the robot arm showninigure
8, the upper-arm S and forcarm IvW define! the armplane A. The robot can be viewed
as atwo-link planar arin with joint rotations 92 and 04 which move the arm in the planc A.
The arm plane A can rotate about the shoulder roll axis by 0, and about the upper-arm by
05. When the robot base is stationary (05 = 0), the wrist attains mazimum manipulabilily
when02.0, - 90°, which is the classical two-linkarin result [18]. Henceensuring that the
clbow angle ¢ = 90° guarantees the optimality of the wrist manipulability in the arm plane
A when(s:- O.

Having established the desirabil ity of the ¢ = 90° conditio n based on the above arguments,
the platform can be positioned continuously to attain the target elbow angle ¢ = 90° while
the wrist is executing the specified motion. Since the platform motion is often considerably
slower than the arm movement, it is preferrable not to move the platform continuously. To
this end, instead of tracking the constraint ¢ = 90° accurately, we canimpose the incquality
constraint

90 °- < <90° 6 (66)

where 6 is a user-dme,ificd tolerance or margin. Whenthe elbow angle ¢ is withinthe allowable
bounds, the task weighting factor for ¢ is set to zero, and in this case base mobility will not
be activated [unless the target wrist position is otherwise unattainable]. When ¢ is outside
these bounds, i.e. ¢ > 90 °-1 6 (arm over-stretched) or ¢ < 90° - & (arm under-stretched),
the task weighting for ¢ changes sinoothly to one as showninVigure 10 and the platform is
moved automatically to restore the optimal configuration ¢ = 90°, without perturbing the
wrist position. Thus the automatic motion of the base platform prevents undesirable over-
stretched or under-stretched arm configurations, while enabling the wrist to reach positions
in the workspace that would otherwise be unattainable.

Now let(a,y, z) represent the coordinates of the wrist and 0s be the z-coordinate of the
base. The shoulder-wrist distance SW is given by
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S1L %t = asin?¢/2: (- 05)2 4y (2 - h)? (67)

For a given wrist position W, the elbow angle ¢ is determined solely by the basc location 0,
To attain a desired clbow angle ¢, the required base location is found from (67) as

0y 2 w (6R)

where w? = 4 sin® 612 - y? - (2 - h)2 Iigquation (68) gives two solutions for the platform

position 0s, given the desired elbow angle ¢. These solutions are symmetrical about the line
perpendicular fromW onto the x-axis. Because of the slow communication rate with the plat-
forin control unit, the arm-plus-platforin control system is not implemented as an integrated
5 DO system. Instead, a “4 -4 17 DOJ approach is adopted whereby motion commands
for the platform position 05 arc computed based on the arm configuration {0; . ..04} using
a stanid-alone software, andare communicated through a serial port to the platforn control
unit for execution.

We shall now present the experimental results on real-tilllc control of the mobile manip-
ulator system. The purpose of the experiment is to demonstrate how base mobility can be
uscd to appropriately move the armin order toreach a target wrist position. i this exper-
iment, the user has specified the task weightings Wy of 1 and feedback gains k of 1 for the
wrist andarm angle control tasks, joint velocity weightings W, of 0.005, and clbow angle

marginé= 30°. Starting from the initial wrist position of a = - 3.075m,y = - 0.624n, and
z:1.200m, and the initial armangley = 45°, the wrist is commanded to move to the final
position of @ = - 3.925m, y = - 0.624m, and 2 = 0.600m in 35 scconds while ) remains

constant. Note that the targetl wrist position is beyond the reach of the arm if base mobility
is not activated. The elbow angle control is sclected as the fifth task. Figure 11 shows the
experimental results for the system. Theplot snows that whenthe elbow angle exceeds 1200,
the platforin starts to move and brings the elbow angle back to approximately 90°. Notice
that since the wrist velocity is greater thanthe base velocity, the clbow angle exceeds the
user-sl)ccificd range 60° <¢ < 120° momentarily untilthe base mobility has suflicient time
to compensate for the wrist motion. Thus, the base mobility of the arin is used cflectively to
prevent the arm from reaching its workspace boundary.

5 Conclusions

Coordination of base mobilily and arm manipulation in a mobile robot system is essential
{for successful execution of tasks. Using the configuration control forialism, a simple on-
line approach is proposed in which the mobility and manipulation degrees-of-frecdom both
contribute to the end-eflector task and the user-specified redundancy resolution goal, while
satisfying the non-holonomic Last constraint (if applicable). This formulation puts iobility
and manipulation on the saine footing, and treats them equally within a common framework.
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The key advantages of the present app roach over the previous schemes are its flexibility,
shmplicity, and computational efliciency. The ability to change the task specifications and the
task wcighting factors on-line based on the user requirements provides a flexible framework
for mobile robot control. I'urthermore, in contrast to some of the previous app roaches which
arc suitable for off-line motion planning, the simplicity of the present approach leads to
computational efficiency which is essent ial for on-line control in real- time implementations.
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7 Appendix

In this Appendix, we discuss the effect of base mobility on the end-eflector manipulability
index.

Consider the end-eflector manipulability index given by cequation (35

5H) as

je= {det[J I PV et [T Jyd ]} 1 (69)
When the arm is in a non-singular configuration, J, is of full rank and J,J! is a positive-
definite matrix. Hen ce, equation (69) can be written as

det[de J1] = det[J, 1] . det[] 4 (J.JF) - 0y d]] (70)

Let us now express J,J! and JyJ as the products
Jodl = STS 5 ad) = STCS

where S is a non-singular matrix and C = S™7(J,J7)S" 1. Then we obtain

det[J =1 (Jo Iy T (BJD)] = det[] 4 ST CS)
det[1+ C]

m

= 1@ 0d) (72)
1= 1
wh cre 04(> 0) are the cigenvalues of C. Thus froin equations (69) and (71), we have

fe = a1+ 07))! /2. He 4 O (72)

wile.rc o is positive and hence pte > .

When the arm is in a singular configuration, J, is rank-deficient and hence J,J7 is a
positive semi-definte matrix. In this case, if the Last is in a non-singular configuration, i.e.,
Jy is of full rank, the above analysis can be repeated with J, replaced by Jy to show that
fte > fta. However, if the basc is also in a singular configuration , Jy, JI is positive semi-definite
and the end-cffector manipulability index ji, 1nay be zero, that is, ji > j1,(z 0).
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Figure 1. Rover- mounted manipulator
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Figure 2. Initlal and final configurations in the simulation study (not drawn to scale)
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Figure 3a. Motion trajectory of the end-effector E
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Figure 3b. Variations of the rover orientation ¢ and elbow angle y
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Figure 4. A PUMA-like robot mounted on a track

t(sec)l X (cm) ly(cm) z (cm) ¢ 0 02

03
________g_;%L deg) | (deg) | (deg) [ (cm)
2a-0 | 20 |3866 | 500 |225,0{ @0 | 48.1 | 729 |-90.0 | 343.3

o=1 2.0 384,2 | 48.2 | 2205 921 | 376 | 77.1 |[-87.8 | 321.7

a=lo| 20 341.8 | 37.3 [ 193.2 |108.7 | 16.3 | 90.7 |-71.3 [ 214.0

Table 1. Effect of a on steady-state performance with p = 1

t(See) | x (cm) | y(cm) | z (cm) ) 04 e, 03 04
(deg) | (deg) | (deg) | (deg) | (om)

o=0 20 |[386.6 | 50.0 | 225.0 | 90.0 | 49.1 | 72.9 | -90M| 343.3
B=1
a=| 20 | 38BP[48.2 | 2205 | 943 | 352 | 77.6 |-8o.7|315.5
B=1/2 _
o=10 20 |3L3B|41.1 | 2027|1522 | 144 | 72,0 |[-27.8]191,8
B=1/11

Table 2. Effect of aand p on steady-state performance
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Figure 9. Variation of the armireact, as a function of the elbow angle

900-A 90° 90°4A

¢

Figure 10. Variation of the task weighting faclor as a function of the elbow angle
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Figure 11. Experimentai Data




